氢能被称为人类的终极能源,氢储能更因为容量大、寿命长、规模大、储能密度高、布置灵活等,被业界认为是锂电池、钠电池等新型储能技术的重要补充手段。
不过,氢气能量密度是汽油的3倍,一旦发生危险,后果难以想象,但是氢气由于本身特性,容易和许多物质发生互学反应,且密度较小,容易散失,因此储氢是困扰行业人员的一个大问题。
现阶段,技术发展最为成熟的储氢技术是物理储氢。
物理储氢技术指改变氢气存储条件,提升氢气密度,从而存储氢气,优点是成本低、易放氢,主要有高压气态储氢和低压液化储氢两种方式。
目前,最成熟、最常用的储氢技术是高压气态储氢。
高压气态储氢,指在高压条件下,压缩氢气,将其存储为高密度气态形式。优点是成本低、能耗低、易脱氢等;缺点是储量小,且需要耐压容器,存在氢气泄漏、容器爆破等风险。
该技术难点是储氢密度容易受压力影响,压力越大,氢气质量密度越大,压力范围在30-40MPa时,氢气质量密度增长较快,当压力大于70MPa时,变化很小。
据悉,储氢罐的材质是决定压力的重要因素,储氢罐正常工作压力范围是35-70MPa,因此,行业正致力于改进储氢罐的材质,制造轻质、耐高压的储氢罐。
现在,高压气态储氢容器主要分为四种类型,纯钢制金属瓶(I型)、钢制内胆纤维环向缠绕瓶(II型)、铝内胆纤维全缠绕瓶(III型)和塑料内胆纤维缠绕瓶(IV型)。
III型瓶和IV型瓶重容比较小、单位质量储氢密度较高,可应用于氢燃料电池汽车。
在未来,低温液态储氢技术可有效补充高压气态储氢技术,最终实现两者协同发展。
低温液态储氢,指在低温、高压条件下,氢气可液化存储,体积密度可达到气态的845倍,实现氢气的高效率运输。
为了保证低温、高压条件,低温液态储氢技术除了对储氢罐的材质有要求,还需要装配严格的绝热方案和冷却设备。
此外,低温液态储氢技术现在还面临三个难点。
第一,为控制环境温度,储氢罐需要增加保温设备,可温度又对氢气密度有影响,如何控制温度在合适的范围呢?
第二,储氢过程中,氢气气化一般会造成1%左右的损失,如何减少这一损失?
第三,为保证低温环境,储存一定量的氢气,需要耗费相当于储氢能量30%左右的损失,如何降低这一损失?
低温液态储氢虽然还面临较多问题,但是它在大规模、长距离储存和运输上存在巨大优势,随着我国三项液氢国标的正式实施,以及相关技术的不断进步,成本的不断降低,低温液态储氢未来可期。
2025年,天津轨道交通迎来快速发展新阶段。作为城市交通体系的重要组成部分,天津市轨道交通集团有限公司(以下简称“天津轨道集团”)公布了2025年的发展规划,涵盖线路建设、运营优化、技术创新及服务升级等多个方面。此次发布旨在进一步提升天津轨道交通的覆盖率、便捷性和智能化水平,为市民提供更高效、更舒适的出行体验,同时助力天津城市经济的高质量发展。 一、2024年运营成果回顾 客运量与线路里程 2024年,天津轨道交通累计发送旅客2.38亿人次,同比增长7.8%。 运营线路总里程达317.2公里,覆盖全市主要区域。 轨道交通占全市公共交通出行比例提升至28.7%。 服务与社会效益 轨道交通有效缓解了城市交通拥堵,减少道路交通事故发生。 沿线商业区经济活力显著提升,带动就业增长约3.5万岗位。 二、2025年建设与扩展计划 新增线路与站点 2025年计划新增轨道交通里程约50公里,重点推进地铁6号线二期、10号线一期等项目建设。 新增站点覆盖滨海新区、武清区等区域,进一步完善城市轨道交通网络。 预计新增站点将惠及100万市民,缩短通勤时间。 技术升级与智能化改造 引入无人驾驶技术,计划在6号线试点运行无人驾驶列车...